.

Tuesday, April 16, 2019

Youngs modulus of elasticity of nicrome wire Essay Example for Free

Youngs modulus of elasticity of nicrome equip Es ordainThis can be avoided by not adding the weights if and when there are persons on the woody block side of the wire. Apparatus cable (around 3. 5 meters) 2x wooden blocks 1 G-clamp Weight Hook 12-15 weights. ( cytosineg each) Accuracy 0. 1g in 100g = 0. 1% error Roller Pulley Celotape micrometer caliper Screw-gauge. Accuracy 0. 01mm in 0. 19mm = 5. 36% error Scale (e. g. Rule) Accuracy 2mm in 3570 mm = 0. 06% error tote up Approximate error localise 5. 52% = 6% RESULTS Note I have taken the commit of one Newton to be the where the book of facts because I found it difficult to measure the length of the wire without pulling on it. This was because the wire was coiled originally and so kept trying to go prat to its original coiled state. This means my wire length impart be inaccurate to approximately one-half a millimetre. This would not have affected the permanent length of the wire because the wire enters the plastic sphere only after around 10 Newtons (Represented on a graph of axis force against extension) The trend mentioned in the issues refers to how much the wire has been pulled from the two markers, which is referred to in the method. The slip is evidently not part of the extension and will be taken into account. master Length of the Wire = 3570mm. = 3. 57 meters Original Diameter of the wire = 0. 175mm = 1. 75 x 10-4 meters. Area = 0. 0000000962m3 = 6. 92 x 10-8m3 These results may be unduly accurate and this will be taken into account in the conclusion. As the Youngs Modulus concerns the region where Hookes Law is obeyed, then this will be the region where the extension increases in diminished equal amounts. In this case it is 1-9 Newtons here. As this only caused small extensions of 1mm per each weight added, this is where the biggest errors will occur.Ruler to half millimetre accuracy 0. 5mm in 8mm = 0.5 / 8 100 = 6. 25% CONCLUSION What is Youngs Modulus Of Elasticity for Nicrome Wire? Youngs Modulus For Elasticity is defined as puree Over Strain. So (Force Length) (Extension Cross-sectional Area).This is the gradient of a graph representing stress over strain. (In the region where Hookes Law is obeyed) Force (N) Stress (Pa) Extension (m) Strain (Pascals) Youngs Modulus (Giga Pascals) The gradient of the graph represent the stress over the strain. The gradient over the ? y/? x region is big enough to provide a good average. It is more accurate than the tabulated result because it contains the linear y=mx+c graph (This is due to Hooks Law) which is the line of best fusillade for the results (The average).The y-intercept on the graph is very close to the origin, which is what would be expected because if there were no stress (e. g. no force acting on the wire) then there would be, by definition, no strain, as there would be no extension occurring. This shows that this area is obeying Hooks Law because using the y=mx+c compare, this would say c i 0 (approximately equal to 0). So y=mx where tis the stress, x is the strain, and m is the perpetual being Youngs Modulus. ConclusionMy results are accurate, because the graph was a very straight line, as all the points could be plotted to a good degree of accuracy to the original plot from the y=mx equation Stress = (5. 52 x 1011 ) x Strain - Where 5. 52 x 1011 Gpa is my result for Youngs Modulus for Nichrome Wire Stress (Pa) Strain Stress=(5. 52 x 1011) x Strain Error From Original Dividing the result of multiplying the stress by my Youngs Modulus by the original, and multiplying by 100 calculated the error from original column.For each multiplication I got a a result of 6. 72%, which is close to my approximate error range of 6%. My results compared to my prediction My results, did not entirely agree with my prediction. From preliminary experiments the Youngs Modulus would be in the region of clxxx GPa.

No comments:

Post a Comment